Pressure-energy correlations in liquids. V. Isomorphs in generalized Lennard-Jones systems.
نویسندگان
چکیده
This series of papers is devoted to identifying and explaining the properties of strongly correlating liquids, i.e., liquids with more than 90% correlation between their virial W and potential energy U fluctuations in the NVT ensemble. Paper IV [N. Gnan et al., J. Chem. Phys. 131, 234504 (2009)] showed that strongly correlating liquids have "isomorphs," which are curves in the phase diagram along which structure, dynamics, and some thermodynamic properties are invariant in reduced units. In the present paper, using the fact that reduced-unit radial distribution functions are isomorph invariant, we derive an expression for the shapes of isomorphs in the WU phase diagram of generalized Lennard-Jones systems of one or more types of particles. The isomorph shape depends only on the Lennard-Jones exponents; thus all isomorphs of standard Lennard-Jones systems (with exponents 12 and 6) can be scaled onto a single curve. Two applications are given. One tests the prediction that the solid-liquid coexistence curve follows an isomorph by comparing to recent simulations by Ahmed and Sadus [J. Chem. Phys. 131, 174504 (2009)]. Excellent agreement is found on the liquid side of the coexistence curve, whereas the agreement is less convincing on the solid side. A second application is the derivation of an approximate equation of state for generalized Lennard-Jones systems by combining the isomorph theory with the Rosenfeld-Tarazona expression for the temperature dependence of the potential energy on isochores. It is shown that the new equation of state agrees well with simulations.
منابع مشابه
ar X iv : 1 00 4 . 51 42 v 3 [ co nd - m at . s of t ] 2 8 M ar 2 01 1 Pressure - energy correlations in liquids . V . Isomorphs
This series of papers is devoted to identifying and explaining the properties of strongly correlating liquids, i.e., liquids with more than 90% correlation between their virial W and potential energy U fluctuations in the NV T ensemble. Paper IV [N. Gnan et al., J. Chem. Phys. 131, 234504 (2009)] showed that strongly correlating liquids have “isomorphs”, which are curves in the phase diagram al...
متن کاملInvestigating isomorphs with the topological cluster classification.
Isomorphs are lines in the density-temperature plane of certain "strongly correlating" or "Roskilde simple" liquids where two-point structure and dynamics have been shown to be close to identical up to a scale transformation. Here we consider such a liquid, a Lennard-Jones glass former, and investigate the behavior along isomorphs of higher-order structural and dynamical correlations. We then c...
متن کاملPressure-energy correlations in liquids. I. Results from computer simulations.
We show that a number of model liquids at fixed volume exhibit strong correlations between equilibrium fluctuations of the configurational parts of (instantaneous) pressure and energy. We present detailed results for 13 systems, showing in which systems these correlations are significant. These include Lennard-Jones liquids (both single- and two-component) and several other simple liquids, neit...
متن کاملPressure-energy correlations in liquids. IV. "Isomorphs" in liquid phase diagrams.
This paper is the fourth in a series devoted to identifying and explaining the properties of strongly correlating liquids, i.e., liquids where virial and potential energy correlate better than 90% in their thermal equilibrium fluctuations in the NVT ensemble. For such liquids we here introduce the concept of "isomorphic" curves in the phase diagram. A number of thermodynamic, static, and dynami...
متن کاملEquation of state in the generalized density scaling regime studied from ambient to ultra-high pressure conditions.
In this paper, based on the effective intermolecular potential with well separated density and configuration contributions and the definition of the isothermal bulk modulus, we derive two similar equations of state dedicated to describe volumetric data of supercooled liquids studied in the extremely wide pressure range related to the density range, which is extremely wide in comparison with the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 134 16 شماره
صفحات -
تاریخ انتشار 2011